There is probably no other chemical reaction that is as productive as photosynthesis —a biological process that uses light energy and water to ? convert CO2 into energy-rich substances such as sugars inside plants. Scientists estimate that plants produce around 150 billion metric tons of energy-rich biomass worldwide every year. In view of this, researchers are investigating ways of replicating the biomechanisms involved in photosynthesis.
Unfortunately, they haven’t been very successful so far. Photosynthetic processes involve many closely interconnected and extremely complex protein structures based on precisely-defined atomic arrangement that cannot be easily replicated in the laboratory. As a result, scientists have so far failed to achieve their dream of using sunlight to operate an efficient biochemical “factory.”
However, developers at Siemens Corporate Technology (CT) in Munich have now come a big step closer to making the vision of synthetic photosynthesis a reality. They did this by creating shoebox-sized modules in which carbon dioxide is energetically stimulated in the same way as in plant cells. Depending on the testing conditions, the activated CO2 reacts to create a variety of other molecules such as ethylene, which the chemical industry needs for the production of plastics. CO2 can also be converted into the energy-rich gas methane, the main component of natural gas, or carbon monoxide, which can be used to produce fuels such as ethanol, for example.