Reducing carbon dioxide (CO2) to carbon monoxide (CO) through an electrochemical reaction holds strong potential for removing CO2 from the atmosphere to reduce pollution and for producing alternative energy with carbon monoxide as an ingredient. However, the current catalysts used in electrochemical carbon dioxide reduction reaction (CO2RR) are not efficient or selective enough to make CO2RR a practical solution.
The results were published in Nano Research on December 05, 2022.
“With this work, we hoped to solve the problem of environmental pollution and energy shortage through electrochemical conversion of carbon dioxide to value-added products,” said corresponding author Minna Cao of the State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, and of the University of Chinese Academy of Sciences. “In order to enhance the local CO2 concentration on the catalysts' surface, we utilize macromolecule cucurbit[n]uril to functionalize gold surface, which is the distinguishing feature of our work from those that has been done before.”
According to the researchers, gold is known to be highly active in converting CO2 to CO relative to other catalysts. However, the binding energy of both CO2 and CO to the gold catalyst surface is positively correlated, which clashes with the need in CO2RR for CO2 adsorption and CO desorption, since the CO desorption does not occur due to the positive correlation of its binding energy to the catalyst.
The researchers created a controlled synthesis of nanoparticles by modifying CB[6]. CB[6] has negatively charged portals and positively charged surface, which helps contribute to the result of having the electronic interaction between CB[6] and metal regulate the catalytic performance.
The researchers verified both the morphology and surface structure of the nanoparticles through transmission electron microscopy. The gold-based hybrid material (Au@CB[6]) was proven to enhance CO2RR catalytic activity.
“We have proved the interaction between cucurbit[6]uril and CO2 through operando electrochemical measurement and density functional theory calculations,” Cao said.
According to the researchers, multiple factors contribute to the improved catalytic performance. First, the CB[6] can increase the local CO2 concentration near the metal surface by gathering CO2, which means that the Au@CB[6] has tunable, or adjustable, CO2 enrichment. Additionally, the modification of CB[6] allow for improved CO2RR by breaking the previously mentioned scaling relations of the binding affinity between catalyst surface and CO2/CO.
Also, one reason that CO2RR was limited in efficiency with gold surface catalysts previously is that CO2 has low solubility in aqueous electrolytes, an issue that the researchers solved by using the highly specific binding force of macrocycle to selectively adsorb certain species to regular the electrocatalytic reaction.
“The results showed that CB[6] can gather CO2 and lead the increased local CO2 concentration near the metal interface, as well as promote CO desorption, which are the dominating reasons for enhanced CO2RR performance,” Cao said. “Using the rigid macrocycle cucurbit[n]uril to modify the catalysts’ surface is a promising pathway to enhance the electrocatalytic performance.”
The researchers plan to continue to modify the catalyst in order to further improve the efficiency of the CO2RR.
“In the next step, we hope to adjust the shape and size of the gold catalyst in the presence of cucurbit[n]uril to further promote the catalytic performance toward electrochemical reduction of carbon dioxide to value-added products,” Cao said.
The other authors of the paper are Huimin Wang, Yuqing Fu, Zhe-Ning Chen and Wei Zhuang, all of the State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, and of the University of Chinese Academy of Sciences; and Rong Cao, the project leader, who is affiliated with both of the previously listed institutes as well as the Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China.
The National Key R&D Program of China, the NSFC and the Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China funded this research.
Nano Research is a peer-reviewed, international and interdisciplinary research journal, publishes all aspects of nano science and technology, featured in rapid review and fast publishing, sponsored by Tsinghua University and the Chinese Chemical Society. It offers readers an attractive mix of authoritative and comprehensive reviews and original cutting-edge research papers. After 15 years of development, it has become one of the most influential academic journals in the nano field. In 2022 InCites Journal Citation Reports, Nano Research has an Impact Factor of 10.269 (9.136, 5 years), the total cites reached 29620, ranking first in China's international academic journals, and the number of highly cited papers reached 120, ranked among the top 2.8% of over 9000 academic journals.
Established in 1980, belonging to Tsinghua University, Tsinghua University Press (TUP) is a leading comprehensive higher education and professional publisher in China. Committed to building a top-level global cultural brand, after 41 years of development, TUP has established an outstanding managerial system and enterprise structure, and delivered multimedia and multi-dimensional publications covering books, audio, video, electronic products, journals and digital publications. In addition, TUP actively carries out its strategic transformation from educational publishing to content development and service for teaching & learning and was named First-class National Publisher for achieving remarkable results.
Journal Nano Research ; DOI: 10.1007/s12274-022-5159-8 ; Article Title: Tunable CO2 enrichment on functionalized Au surface for enhanced CO2 electroreduction
Source:
EurekAlert!, press release, 2022-12-08.